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1. Introduction. In [4]2 the elements of a Banach algebra are sepa-

rated into various classes: the regular elements, the singular ele-

ments, the null divisors, the generalized null divisors, and so forth.

These classes and their interrelations are then studied in detail. In

[5] transformations between Banach spaces are studied and the

classes of [4], after suitable generalization, are characterized. Among

other things, it is proVed in [5] that each isomorphism between a

Banach space and a proper, closed, linear subspace lies in the comple-

ment of the closure of the set of regular (invertible), continuous, linear

transformations of the Banach space into itself relative to the norm

(uniform) topology on the set of continuous, linear transformations.

Precisely what transformations lie in the closure of the set of regular

transformations seems nowhere to be recorded, even in the special

case where the Banach space in question is a Hilbert space. This fact

would seem to have some intrinsic interest as well as possible tech-

nical usefulness.

In the following section, we describe completely those operators

which lie in the closure of the set of regular operators in an arbitrary

ring of operators (weakly closed, self-adjoint operator algebra on a

Hilbert space)—cf. Theorem 1. Roughly speaking, this closure con-

sists of those operators in the ring whose "essential domain" and

corresponding range have equal relative co-dimension. This result is

then applied to the case of factors (rings of operators whose center

consists of scalar multiples of the identity) on a separable Hilbert space.

It is shown, for example, that the complement of the uniform closure

of the set of regular operators on a separable Hilbert space consists

of those operators which can be expressed as the product of a regular

operator and a partially isometric operator between subspaces whose

orthogonal complements have unequal dimensions. The concluding

section contains some examples which illustrate the difficulties that

arise in examining the uniform closure of the set of regular operators

in an arbitrary C*-algebra (uniformly closed, self-adjoint operator

algebra).
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2. The closure. We introduce the notation r(A) for the closure of

the range of the operator A and n(A) for the null space of A. The

main result is contained in:

Theorem 1. If % is a ring of operators on the Hilbert space 3C and (j

is the family of regular operators in <r\, then Q~~, the uniform closure of Q,

consists of those operators A in 1{ such that, for each e>0, there exists a

subspace3 E, belonging to %_, containing the null space of A, with \\AE\\

<e and E equivalent4 in 'ry to 3COr [A (I — E) ].

Proof. Suppose A is an operator of the type described in the state-

ment of the theorem. Let e>0 be given, and choose E in 9^ contain-

ing the null space of A so that ||.<4ii|| <e and E is equivalent to

3C&r[A(I—E)]. Let A(I — E) = UiHi be the polar decomposition of

A(I-E) (so that Hi= [(I-E)A*A(I-E)]1'2, Ui is a partial isom-

etry from r(Hi) to r[A(I — E)], and Ui, Hi lie in 5\, by [3, Lemma

4.4.1]). Now

r(Hi) = r(H\) = r[(I - E)A*A(I - E)] = I - E,

for r(Hi) is K.Bn(Hx), r(Hf) is 3COn(Hl); and n(Hi)=n(Hf), since
Hi is positive. Moreover,

r[(I - E)A*A(I - E)] = 3Cen[(/- E)A*A(I - £)],

and we shall show that n[(I-E)A*A(I-E)] =£. Clearly £ =

n[(I-E)A*A(I-E)]. Let x be a vector in n[(I-E)A*A(I-E)]
orthogonal to E, so that

0 = ((/ - E)A*A(I - E)x, x) = \\A(I - E)x\\2 = \\Ax\\2;

and x is in n(A)—hence in E. Thus 0 = Ex = x, and E = n(Hf). Let U2

be a partial isometry in % mapping E upon 3COr [A (I — E)] (which

exists by choice of E), and let U=Ui+ U2. Then U is unitary, in <ry,

and ^4(7 — E) = [/i?i. Now U(Hi+eI) is a regular operator in 5^., and

||4 - .7(/Ji + e/)[| = ||/1£|| + \\A(I - E) - U(Hi + el)\\ < 2e.

Suppose now that A is an operator in 'R.not of the type described in

the statement of the theorem, so that there exists a constant k>0

such that if £ is a subspace of 1{ containing the null space of A with

||;1£||^&, then E is not equivalent, in <R., to KBr[A(I-E)]. Let

A = UH be the polar decomposition of A (H= (^4*^4)1/2, U a partial

3 We use the same symbol to designate a closed subspace of 3C and the orthogonal

projection operator on this subspace.

* For the notion of equivalence of projections, dimension function, etc., see [2]

or [3].
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isometry from r(H) to r(A)). Let E be the null space of the operator

(H-kl)VO. Then \\AE\\ g A, for ||lTE|| g A, by the Spectral Theorem,
so that

\\AE\\ =\\UHE\\^\\u\\-\\HE\\^k.

Moreover, E contains the null space of H which is the null space of A.

It follows from our hypothesis on A that E is not equivalent (in 1Q to

3C&r[A(I-E)]. We note that H(I-E)^k(I-E), from the Spectral

Theorem, so that H, restricted to I — E, has an inverse operator, on

I—E. Let T be the operator inverse to H on I—E and 0 on E. Then

T lies in fR, for, if A' commutes with "R. and z = x+y with x in I — E

and y in E, then

TA'(x+y) = T(A'Hu+A'y) = T(HA'u+A'y) =A'u = A'T(Hu+y);

so that T commutes with A'. Now AT= UHT= U(I-E) = Uu and

Ui is a partial isometry from I — E to r[A(I — E)]. Thus, if A is a

uniform limit of the regular operators An in <R, then Vi (=AT) is a

limit of the regular operators An(T+l/n). We shall show that Ui is

not a limit of regular operators in <R. To simplify the notation, our

situation is the following: V is a partial isometry from a subspace P

to a subspace () with I — P and /—<2 not equivalent in <R, we must

show that V is not a uniform limit of regular operators in *R. Accord-

ing to [2, Theorem 5.6], we can find three central projections E, F, G

such that E + F+G = I, and

E(I - P)< E(I - Q), F(I - P) ~/?(7 - Q), G(I - Q)  < G(I - P).

The fact that I — P is not equivalent to I — Q tells us that F-£l, so

that not both E and G are 0. We may assume E is not 0, for, if this is

not the case, we work with V*, so that I — P, I—Q and E, G inter-

change their roles. Of course, V* is a limit of regular operators in *R. if

and only if V is such. If V is a limit of regular operators in <R, then

VE restricted to £ is a limit of regular operators in 'RE restricted to

E (recall that £ is a central projection in 'R). Moreover, VE is a

partial isometry from PE to QE. This analysis in terms of central

projections shows us that it suffices to deal with the case where I—P

<I — Q in order to show that V is not a limit of regular operators in

<R. This assumption being made, suppose that B is a regular operator

in <R with B—KU the polar decomposition of B, and that || V—Kll\\

<l/3. Now U is unitary, so that \\VU*-K\\<l/3, and VU* is a
partial isometry from UP(3C) to Q. Of course,

U(I -P)K<U(I- Q)(K) ~ (J - Q),
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and U(I — P)(3C), is the orthogonal complement of UP(5Z). By gen-

eralizing [l, Lemma 7] from factors to rings of operators, we con-

clude that UP(3C)r\(I~Q)^(0). In fact, [2, Theorem 5.4] states

that for each pair of projections Ei, Fi in ^r\,

Ei \J Fi - Fi ~ £i - jEi r\ Fi.

Applying this with I — Q for £i and UP (JC) for Fu we see that if

(I-Q)fMJP(3C) = (0) then

(/ - Q) ~ (7 - Q) \J UP(K) - UP(SC) ̂  U(I - P)(X),

contradicting U(I - P) (X) <(I-Q). Thus VP(K)C\(I-Q)^ (0) as as-

serted. Let x be a unit vector in the intersection of these subspaces.

Then,

1/3 > \\VU*x - Kx\\ = \\VU*x\\ - \\Kx\\ = 1 - \\Kx\\,

and

\\Kx\\ > 2/3.

On the other hand,

1/3 > [|£77* - K*\\ = \\VV* - K\\,

so that

1/3 > \\UV*x - Kx\\ = \\Kx\\,

a patent absurdity. It follows that V and hence A are not uniformly

approximable by regular operators. In connection with the above

inequalities, note that, by choice of x, U*x lies in P, so that

\\VU*x\\ = \\U*x\\ =||*|| = 1;

and that x lies in I — Q, so that V*x = 0= UV*x. This completes the

proof.

We apply Theorem 1 to the case where our ring 5\. is a factor on a

separable Hilbert space. In this case some of the complications pres-

ent in the more general situation disappear, and the characterization

of the operators in the closure of the set of regular operators takes a

simpler form.

Theorem 2. An operator A on a separable Hilbert space 3C is not in

the closure, Q~, of the set, Q, of regular operators on 3C if and only if

there exists a constant k > 0 such that \Ax\ = kfor each unit vector x inM,

the orthogonal complement of the null space, N, of A, and dimension (N)

^dimension (3CQr(A)). Equivalently, A is not in Q~ if and only if
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A is the product of a regular operator and a partially isometric operator

between subspaces of unequal co-dimension.

Proof. If A does not satisfy the conditions stated in the theorem,

then either dimension (N) = dimension (3C0r(i)) or there is no posi-

tive constant such as A. If dimension (N) = dimension (3COr(^4)), we

can choose N as our E in Theorem 1 (for all «>0); so that A is in

Q~. Suppose then that dimension (N)^dimension (3C-&r(A)). We

may assume that dimension (N) <dimension (3C-&r(A)), for, other-

wise, we deal with A*, observing that N = 3COr(A*) and 3COr(A)

= n(A*). Since 3C is separable, this assumption implies, in particular,

that dimension (N) is finite. Our hypothesis about A implies that

there is no constant A such as described in the statement of the

theorem. Thus, for each e>0, one can find a unit vector x in M such

that \\Ax\\ <e. This assumption on A implies that the spectral projec-

tion, Ei, for A* A corresponding to the interval [0, e2] (and, so, for

every interval [0, B], B>0) contains N properly. In fact, Ei contains

N, and

«2 > (A*Ax, x) = (A*A(I - Ei)x, x) = e2((I - Ei)x, x);

so that

1 > (x, x) — (Eix, x) = 1 — (Eix, x),

and

(Eix, x) > 0 = (Nx, x).

It follows that Ei is infinite-dimensional, for, otherwise, A* A has a

finite number of points less than e2 in its spectrum; and we can cer-

tainly find B, e2>/3>0, such that the spectral projection for A *A cor-

responding to the interval [0, /3] is equal to A''. We take Ei as E of

Theorem 1 corresponding to the given e, and note that Ei, having

infinite dimension, is equivalent to 3C&r[A(I — .Ei)]. In fact, with

A = W(A*A)1/2 the polar decomposition of A, W maps r[(^4*^4)1/2]

= r[(A*A)]=3CON isometrically upon r(A), and (^*^)1/2(/-£i)

^e(I-Ei); so that (A*A)1'2 maps (I-Ex) upon itself. Thus

r [A (I - Ei) ] = r [ W(I - Ei) ], and r [ W(Ei - N) ] is infinite-dimensional.

But r[W(Ei-N)] is orthogonal to r[W(I-Ei)], since Ei-N is

orthogonal to I — Ei and W is isometric on I — N. Thus 3C

Or[W(I—Ei)] = 3COr[A(I — Ei)] is infinite-dimensional and, there-

fore, equivalent to Ei as asserted. Moreover,

m^iH2 = ||£i4*^£i|| = ||4*i4£i|| ^ e2,

so that A is in Q~.
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We must show, now, that if A is in Q~ then A does not satisfy the

conditions of the statement of the theorem. In fact, by Theorem 1,

given €>0, there exists a space £ containing n(A) such that ||.<4£||

<€, with £ equivalent to 3COr [A (/ — £)]. If there is a constant such

as the k of the statement of the theorem, for A, then, choosing e<k,

we see that the corresponding £ must equal n(A) (for, if £ contains

n(A) properly, there is a unit vector x in £ — n(A), hence in 3C-Qn(A),

such that \\Ax\\ =\\AEx\\ <e<k, contradicting the choice of k). But

then n(A) is equivalent to XOr[A(I—n(A))] =3COr(A). In any

event, if A is in Q~, then A does not satisfy the conditions of the

statement of the theorem.

We prove next that an operator not in Q~ is the product of a regular

operator and a partially isometric operator whose initial and final

spaces have unequal co-dimension, and that, conversely, such a

product does not lie in Q~. Suppose, first, that W \s a partially iso-

metric operator whose initial and final spaces have unequal co-di-

mension, and let T be a regular operator. If TW is the uniform limit

of the regular operators An, then W is the uniform limit of the regular

operators T~^An. But, from the first portion of the proof, W is cer-

tainly not in Q~, so that TW is not in Q~. Suppose, now, that A is

not in Q~, A has null space N with orthogonal complement M. We

know that there exists a k>0 such that \\Ax\\ ^k for each unit vector

x in M and that dimension (N) ^dimension (3C&r(A)). Now r(A*A)

is Mand A*A has an inverse on M (since (A*Ax, x)=\\Axl\2}tk2 for

each unit vector x in M). Thus (^4*^4)1/2 has an inverse T' on M. Let

A = W(A*A)112 be the polar decomposition of A, W a partially iso-

metric operator with initial space M and final space r(A). If we de-

fine T to be T' on M and the identity on N, we have that T is a

regular operator, and AT= W; so that A = WT~l. Since A is not in

(j~, W'\s not in Q~, and it follows at once, from Theorem 1, that the

co-dimensions of the initial and final spaces of W are unequal.

Theorem 2 is valid for factors of type Ix where "co-dimension" is

replaced by "relative co-dimension," since the property of being a

product of a regular operator and a partial isometry of the described

type is algebraic (when relative dimension replaces dimension). It is

immediate, from Theorem 1, that each operator, A, in a factor of

type Hi is the uniform limit of regular operators in the factor (take

as £ the null space of A). The result for factors of type Hi also

follows quite easily from the fact that each operator in the factor is

the product of a unitary operator and a positive operator in the

factor. For factors of type III on a separable space, the complement of

the uniform closure of the regular operators consists of those operators

which are the product of a regular operator and a partial isometry
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whose initial and final spaces are the whole space and some proper

closed subspace, in the factor, respectively, and their adjoints. In

fact such an operator is not approximable by regular operators, since

the partial isometry is not. Supposed is an operator with null space N

and M =3COiV, in a factor of type III. If both A and 3C&r(A) are non-

zero, then they are infinite hence equivalent, and A is approximable

by regular operators, by Theorem 1 (take £ to be TV for all e>0). We

assume N=(0) and 3COr(A)^(0) (otherwise deal with A*). Let

A = W(A*A)112 be the polar decomposition of A. Then W has 3C as

initial space (the closure of the range of (A*A)112) and r(A) (a proper

closed subspace) as final space. If for each e>0 the spectral projec-

tion E' for (A*A)112 corresponding to the interval [0, e] is nonzero,

then E' is infinite and will serve as the E of Theorem 1 for e. In this

case, A is again approximable by regular operators in the factor, so

that we may assume that E' = 0 for some e>0. But then (A*A)112 is

invertible, and the polar decomposition for A, noted above, repre-

sents A in the desired form.

3. Some examples. In the preceding section, we described the uni-

form closure of the set of regular operators in a ring of operators

relative to that ring of operators. It is natural to ask, at this point,

whether or not some such description could be given to the uniform

closure of the set of regular operators in an arbitrary C*-algebra.

The fact that the containing algebra is only uniformly closed seems

to introduce topological difficulties not present in the case of a weakly

closed algebra. Moreover, there seems to be little connection between

the closure of the regular operators in a C*-algebra and the closure of

the regular operators in the ring of operators generated by this

C*-algebra (i.e., its weak closure).

The difficulties just mentioned occur even in the case of abelian

C*-algebras with identity (function rings on compact-Hausdorff

spaces) as we shall illustrate in the following examples. First, how-

ever, we note the situation for abelian rings of operators. Each

operator A in an abelian ring of operators is uniformly approximable

by regular operators in the ring. In fact, A commutes with A*, so

that A is normal, and N, the null space of A, is the null space of A*

(for a normal operator, A, \\Ax\\ =||.<4*x|| for each vector x). Thus, if

M is the orthogonal complement of N, then M is the closure of the

range of A, and we may take A^ as E in Theorem 1 for each e > 0.

Examples 1 and 2, following, illustrate the way in which the con-

nectivity properties of the underlying compact-Hausdorff space in-

fluence approximability by regular operators.

Example 1. As our Hilbert space X, we take L2(0, 1), and, as our
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algebra, zA, we take the family of all operators T/ defined on each

function g in L2(0, 1) by Tj(g) =fg, f real and continuous on [0, l].

The algebra zA is an abelian C*-algebra over the reals. The spectrum

of Tf is the range of values of /. It is not difficult to see that Tf is

not approximable by regular operators in zA if and only if 0 is an

inner point of the spectrum of Tf (relative to the real line). On the

other hand, the weak closure of zA is abelian, so that each operator in

zA is approximable by regular operators in this closure.

Example 2. As our Hilbert space 3C, we take 72 functions on the

closed unit disk in the complex plane, and as zA, the algebra of

operators defined formally as in Example 1. Simple homotopy con-

siderations show that an approximant to Tz (multiplication by z)

must have 0 in its spectrum; i.e., T, is not approximable by regular

operators in zA.

Example 3. As our Hilbert space, 3C, we take L2 functions on the

upper half of the unit disk in the complex plane; more precisely, those

complex numbers z = a exp (iff) such that 0^a = l and O^d^ir, and

again as zA the algebra of multiplications by continuous complex-

valued functions. As an indication that more is involved than 0 being

an inner point of the spectrum, we exhibit an operator in zA whose

spectrum is, in fact, the unit disk, which is, nonetheless, uniformly

approximable by regular operators in zA. Define / by f(a exp (iO))

= a exp (i26). The range of/ is the unit disk, so that the spectrum of

Tf is the unit disk. On the other hand, 7/ is approximable by regular

operators in zA. In fact, given e>0, we define /i as follows:

fi(ct exp (id))=a exp (i(20(l —t/ir) +e)). There is no difficulty in

verifying that ||/i-/|| <«, so that \\Tfl-Tf\\<t. Moreover, if /3>0,

then /3 is not in the range of /i, and therefore not in the spectrum of

Tfv Thus Tfl—^I is regular, in zA, and, for small @, HZ/,—j87—T/||

<e, establishing the desired result.
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